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We study a convection problem in a container with a surface open to the air and heated by a long wire placed
at the bottom. Coupled buoyancy and thermocapillarity effects are taken into account. A basic convective state
appears as soon as a temperature gradient with horizontal component different from zero is applied. It consists
of two big rolls that fill the convective cell and are parallel to the heater. A numerical solution allows us to
determine this basic state. A linear stability analysis on this solution is carried out. For different values of the
applied temperature gradient the basic rolls undergo a stationary bifurcation. The thresholds depend on the
fluid properties, on the geometry of the heater, and on the heat exchange on the free surface. This confirms the
results obtained in recent experimer81063-651X97)00609-0

PACS numbeps): 47.11+j, 47.20.Dr, 47.20.Bp

I. INTRODUCTION half of that of the stationary bifurcation. In Ref§—13 the
basic motions are hardly visible and the primary motions
Convection provides one of the best physical systems outorrespond to some traveling waves; stationary patterns are
of equilibrium in which pattern formation and spatiotemporalnot observed. Some theoretical results from these experi-
complexities can be studied. Depending on the liquid and oments are in Refl15]. In all these studies the heaters have
the container different mechanisrtisuoyancy, thermocapil- low “heat capacity” and therefore it is conceivable that a
larity, geometry, non-Boussinesq effects, local heating, angoupling between the temperature distributions of the heater
so on can be selected to obtain several transitions and dyand the fluid exist$12]. This coupling has been avoided in
namic regime$1,2]. For example, buoyancy and thermocap- Ref.[6], which corresponds to the situation treated here.
illarity effects are considered in the Bard-Marangoni prob- It could be thought that these problems are related to lat-
lem (BM). This instability arises in various important eral heating, but experiences show different behaviors, be-
technological processes and has been the subject of a consighuse the instability observed in lateral heating consists
erable amount of research wdr&,4]. Typically, the heating mainly of stationary rolls that get unstable as hydrothermal
is uniform through the bottom surface and the correspondingvaves. Their axes are perpendicular to the temperature gra-
temperature gradient is vertical, but interest has recentlgient[16,17. In one-dimensionallD) heaters the instability
arisen in applying the heating in a different way. For in- of the basic state has the form of longitudinal rolls with their
stance, heating on a lateral wall has been studied, mainlgxes perpendicular to the heater, i.e., parallel to the horizon-
motivated by the need to understand the hydrodynamic agal component of the temperature gradient. There is a rel-
pects of crystal growth in a low-gravity environmédbi. We  evant theoretical paper by Smith and Dafds] in which
analyze localized heating on the bottom surface so that théhey study nonuniform lateral heating. The inhomogeneity
temperature gradient is not purely vertical or horizontal. Theconsists of the application of a higher temperature near the
study of localized effects in the general problem of turbu-bottom than near the top surface. They find longitudinal rolls
lence is important in order to understand the processes ifike those observed with 1D heaters and those in our study.
volved at different scales because it is known that structures The main aim of this paper is to study theoretically the
formed in a large scale are due to effects at a lower scalgffect produced by inhomogeneous heating, with a Gaussian
i.e., localized effects, which traditionally are not taken intoshape in one direction, in a BM instability. The width of the
account but may generate significant differences in the regbaussian profile is measured by a paramgter such a way
processes. In the present paper we study BM convection dubat large 8 implies homogeneous heating and small
to non-uniform heating which has a Gaussian shape in theneans quasi-1D heating as described in R&f.although in
transversal direction. This problem is related to the convecfact there are no experimental results accounting for a con-
tion from a quasi-one-dimensional heater that has been an&inuous change i3, because this parameter is difficult to
lyzed experimentally in recent yeai$—13. In Ref. [6] control. We distinguish two situations depending @nthe
when a slight temperature difference is applied between themooth inhomogeneity for largé and the sharp inhomoge-
heater and the top open surface, a pair of rolls appears witmeity for small 3. In both cases the curves of marginal sta-
out threshold. Their axes are parallel to the heater, i.e., pebility are calculated for the primary bifurcation. The basic
pendicular to the horizontal component of the temperature@quations and the basic convective pattern are discussed in
gradient. When the temperature difference is increased futhe second section of this article. The reference flow is ob-
ther, a bifurcation towards a structure of rolls perpendiculatained numerically because an analytical expression of this
to the heater takes place. If the temperature difference isolution of the hydrodynamic equations does not exist. Sec-
increased again, secondary oscillatory bifurcations appedion Il is devoted to the linear stability analysis of this basic
and the resulting patterns have a wave number that is oneolution: the derivation of the equations and boundary con-
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: corresponding fields have been droppeade the continuity
equation

V-u=0, (1)

the Navier-Stokes equation

¢9tu+(u-V)u=Pr(—VanAqumeZ , 2
e the energy balance equation
FIG. 1. Problem setup.
40+u-VO=A0. 3

ditions (BC) for the perturbations and resolution of the cor- V. and A h bl d the Lalaci ¢
responding eigenvalue problem. The results are presented anda are theé nabla and the Lapiacian operators, respec-
Ively, « is the thermal expansion coefficieptthe density,

distinguishing between the two cases explained previousl)}. i< th . i the directi he followi
In Sec. IV we discuss the mechanisms of the instability, theand €, is the unit vector in the direction. The following

main numerical results, and some conclusions. The numerfimensioniess numbers have been introduced:
cal techniques used are explained in the Appendix. v gaATd?
Pr=—, R=>———, @)

Il. FORMULATION OF THE PROBLEM K K

The physical situation that we consider is shown in Fig. 1.Pr is the Prandtl number, aritl the Rayleigh number, with
There is a horizontal fluid layer of depth(z coordinat¢in 9 the gravity. The Rayleigh number is representative of the
a container of lengtit. (y coordinat¢ and widthl (x coor- ~ buoyancy effect. _
dinate. As shown in the figure.>| and for this reasoi. The above constants take the following values for the
can be considered to be infinite. The container has a rigi§onsidered liquidsilicon oil):
bottom plate and an upper surface open to the atmosphere. A 5% 105 me/s
heater is located in the middle of the bottom plate at V= ’
x=1/2, along they direction. The width of this heater is

— — 7 2
much smaller than the width of the container. The heater is at x=124x10"" m'/s

Ty, and the temperature of the environmentTis (<T). w=1.05<10"3 °C-1
ThenAT=T,—T, is the local difference of temperatures in ' '
the liquid layer just over the heater. ~910 K a/n?
Starting from the general hydrodynamic problem several Po 9
assumptions are convenient in order to perform a more trac- y=8510° NmteCc L

table analysis. These af&) the Oberbeck-Boussinesq ap-

proximation as usually assumed in convective proble@s. For this liquid Pe=40.32, which is large enough to be con-
The variation of the surface tension as a function of the temsjdered as infinite.

perature is approximated by (T)=oq— y(T—T,), where

oy is the surface tension at temperatiig vy is the constant IIl. BASIC STATE
rate of change of surface tension with temperatyrés(posi- . _ o
tive for most current liquids (3) The length in they direc- When the wire heater is on, a temperature distribution on

tion is considered infinite4) The free surface is assumed to the bottom plate appears and as soon as the imposed gradient
be undeformable. This assumption is not strictly true, espehas a nonzera component, a convective motion sets in. In
cially just over the 1D heater, but the deformation is verycontrast to the classical BM problem with homogeneous
small as shown in the experiments of Kayser and B&lg  heating on the bottom surface, the basic steady state in this
The system evolves according to the momentum balancease is not a conductive state, but a convective one. This
equations and to the energy conservation principle. In thenotion has translational invariance in tlyedirection and
equations governing the systam, u,, andu, denote the therefore the basic state has no dependence on toerdi-
components of the velocity field of the fluid, t the time, nate.
andp the pressure. The spatial coordinatesgy(z) are rep- A very useful approach is to express the velocity fielith
resented by . These variables are expressed in dimensionterms of a potential as followg19]: u=VXxXVX¢ e,
less form after rescaling in the following form: +VX¢ e,, whereVXVX¢ e, is the poloidal part and
r'=rid, t'=«t/d? u'=du/k, O=(T—Ty)/(AT), p’ VX ¢ e, is the toroidal part, but if the fluid has an infinite
=d?p/(pokv). (Here k is the thermal diffusivity,p, the ~ Prandtl number, the equation f@r has only the solution
mean density, ana the kinematic viscosity of the liquil. =0 and it is sufficient to consider the poloidal part. There-
This normalization transforms the original spatial interval,fore the final expression for the velocity field is
[—1/2)/2]xEx[04d], into another one in which the limits u=(dxd,¢, dyd,¢b, —A1), whereA,;= g3+ d; . The trans-
are[—I',I']XRX[0,1]. HereT is the aspect ratio which is lational symmetry in they direction for the basic state im-
defined asl’=1/(2d). Within Boussinesq's approximation, plies that all the derivatives in this coordinate are zero. So it
the governing dimensionless equatioftke primes in the is possible in this case to obtain a simpler expression for the
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velocity field. If we call = d, ¢, we haveu=(3d,1#,0,0,).  After using a suitable rescaling and keeping in mind that
This replacement allows us to reduce the order of the partiahere is no dependence on thecoordinate, that condition
differential equations for the potential. Now the number oftransforms into
boundary conditions we have is appropriate to pose a correct
problem.
For computational convenience, the coordinate transfor-
mationsx’ =x/I" andz’'=2z—1 have been performegve
drop the prime in the following which transforms the do-
main in thex-z directions into the squarfe-1,1] X[ —1,1].
After eliminating the pressure and as=Pr, the momen-
tum and energy equations in the steady state are

1 2 2 M 2
Fé’x—4(92 UZZ_F‘?X’ (14)

where M= (yATd)/(kvpg) is the Marangoni number that
describes the thermocapillarity effects. After assumpt®n
there is no deflection on the free surface, and therefore
u,=0 on z=1 or #2u,=0 on z=1. After replacing

2 2 u,= (1m) 9,4 the final form for the viscous condition on the
Fazzpax(a —Fﬁx(//(?z® =A0, (5)  open free surface can be taken as
1 49%y= M 3,0 (15)
A2¢—FRaX®:o, (6) W= A0

This is the viscous condition on the open free surface.
Now we shall discuss the BC in the direction
(—1lsx=1).x==*1.

whereA=(1/T?) 92+ 442

A. Boundary conditions

As shown in experiments, there exists a Gaussian tem- __1
’ Bs®=—=4,0, 16
perature distribution centered on the heater alongxthgis sd r (16
and atz=—1.
=0, 1
O(z=~1)=exi] (3907 ], U v 47
aXl/i:O1 (18)

where—1<x=<1 andp/39 is the width of the distribution.
Therefore the values g8 taken in this paper correspond to
the width of a Gaussian heating (€xp</g]) in a cell whose
normalization is[ —39,39 in the x direction. In order to
keep the integer values @ we do not rescale them.

The following BC ought to be fulfilledz= -1,

whereB4 accounts for heat exchanges on the vertical walls,
which are assumed to be insulating and thereBygis taken
to be zero.

B. Numerical results of the basic state

=0, (8) We solved numerically Eq$5) and(6) with the boundary
conditions(8)—(18) discussed previously and we found that
d,p=0, (9  the solution converges to a roll that fills the box with a flow
rising at the center of the cell and moving towards the side-
(rigid bottom plate walls. Here we only discuss the results obtained since the
details about the numerical method are described in the Ap-
0 =exd —(3%)% 8] (10 pendix.
As experimental results are mainly given in termsdof
for the heating on the bottom surface= 1, and AT, we use the liquid properties quoted in RE] to
show our results in this representatigNotice that only the
BO=-24,0. (11)  kinematic viscosity changes from experiments in Héf|
_ 3 [5¢(1cS=102 cn?/s)]and that in Refd.10,1 (10 c9).
This condition accounts for the heat exchange on the fregome representative solutions are presented in Figs. 2 and 3.
surface. B is the Biot number which is defined by The temperature and the velocity profiles strongly depend on
B=hd/K, whereh is the thermal surface conductance andthe heat exchanges across the open surfaweasured by
K is the thermal conductivity. h), on B, and, of course, on the applied difference of tem-
The surface tension due to temperature differences genegeratures at the wire. For a fixg the larger the interchange
ates shear stresses on the I|qU|d open surface. This Conditiw heat(|argeh), the |arger the temperature difference across

may be expressed &S] the layer atx=0 [compare Figs. @) and 2b)]. For a fixed
) h, by decreasing the temperature field and the streamlines
vpo(AqU,—dzuU,) = —Ay0. (12 pecome localized near=0 [see Figs. 2 and(8) and 3d)].

If we increase the applied difference of temperature at the
The linear dependence o_f the surface tensiomith the tem- origin, both fields expand in the céBee Figs. 2 and(8) and
perature allows us to write 3(c)]. In short, small@ andh generate small differences of
) temperature at the origin and therefore make the instability
vpo(A1U;—dyUy) = — droAqT. (13)  more difficult.
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. (a) . Fourier modes in this direction, but the cell is finite in the
z 0“ I andz directions and the eigenfunctions are more difficult to
3 - 02 calculate in this plane, so a development in series of Cheby-
3 . x 1 shev polynomials was chosen in this case.
After replacing the expressiori$9) and(20) into the hy-

(b)

1 1
z 0 I drodynamic equations the following linear eigenvalue prob-
4 e 02 lem results:

-1 0 x 1

1 ) ) Iy — - -
‘- .y

-1 -0.2

-1 0 X 1

=0, (21

&)
1 = — - 1 L —_
2017 m I AZU(x,2)+RA;0(x,2)=0. (22)
-1 - — L. -0.2
X 1

- 0 Using the potentialp instead of the velocityl one arrives at

FIG. 2. Isotherms of the basic state before the instability for 9 _ 2 _
d=1 and different3, h numbers and temperature differenc€g, , ( A—A+ ux—x +2u,0,| 0+ | =0,00,0,— ﬁZ®A1) ¢$=0,
the axes arex and z. (@ B=200, h=12.4 (W/nf)/°C, and r r
AT=1°C; (b) B=200, h=124 (W/n?)/°C and AT=1°C; (c) (23
=200, h=12.4 (W/nf)/°C and AT=7.57°C; (d) B=2500, py ~ ~
h=12.4(W/m?)/°C, andAT=1°C. —A“A16+RA;0=0. (24)

The equations and boundary conditions result then in the

IV. LINEAR STABILITY OF THE BASIC STATE ; .
following eigenvalue problem:

To perform the linear stability analysis of the basic state dy (2 _
calculated in the preceding section, it is perturbed with a | A=A+ U +2U,9,| O+ fﬁx@)&x&z—&z@Al)Q’):O,
vector field depending on the, y, andz coordinates, in a (25)
fully 3D analysis:

—A2A. D+ 0=
Up(X,Z) + u(x,z)eMHky, (19 47424+ RALOZ0, (20
—49%p—MO=0 at z=1, (27
0,(x,2)+ O(x,z)eM kY, (20)
$=0 at z=-11, (28)
In this expression the subscriptindicates the corresponding
quantity in the basic state and a tilde refers to perturbations. d,6=0 at z=-1, (29
Notice that, as there are no boundary conditions in ythe
direction, which is taken as infinite, it is possible to take the _252@_5@20 at z=1, (30

0=0 at z=-1, (3D

. 7 (a) 07
] = Z__ F 3
) : - =0 at x=-1,1, (32
5 (b) 04 0)( =0 at x=-11, (33
g -
p 04
=1 0 X 1

d,d=0 at x=-11, (34)

(c) ~
g = 'y o e -
-1 43
-1 0 x 1

where the Laplacians ared=(1/12)32+49>—k?> and
Ay=(1M?) 92— K>,

1 (d) 0.2
? I o2 A. Convergence of the nhumerical method for stability analysis
-1 0 x 1 e

The numerical method used in this section is explained in
FIG. 3. Streamlines of the basic state tbr 1 and differentg,  the Appendix. We discuss here the validity and convergence
h numbers, and temperature gradients, the axesxamad z. (a) of the results obtained. In order to contrast the results pro-
B=200, h=12.4 (W/nf)/°C and AT=1°C; (b) pB=200, Vided by our algorithm we compare the temperature thresh-
h=124 (W/nf)/°C, and AT=1°C; (c) B=200,h=12.4 olds for the instability in the limi{3—c with the very simi-
(W/m?)/°C, andAT=7.57 °C;(d) B=2500, h=12.4 (W/nf)/°C lar situation of classical BM convection in an infinite vessel
andAT=1°C. for a fluid with the same physical properties as ours. Then
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TABLE I. Thresholds of instability for different orders in a TABLE Ill. Critical temperature differencesAT, for
pseudospectral approximation for finite and infinite vessels. Thén=12.4 (W/m?)/°C and twodifferent values ofg, for which con-
value ofh is 12.4 Wm2°C™ L, vergence is not good, increasing the numiesf Chebyshev poly-

nomials used in the expansion of the perturbation fields.
11X7 21X9 I'=w
h=12.4 (W/m?)/°C
d (mm) ke AT, ke AT, ke AT,
1 2.05 5.97 2.05 5.97 2.10 588 MXN B=100 B=20
7X9 6.95 7.05
7X11 7.26 7.70
we draw up Table |, which shows no practical differencesyx 19 8.22 11.16
between the two algorithms, i.e., our numerical approach rey o1 8.46 12.09
covers known results. 7% 25 9.04 13.98
In order to test convergence when we move away from,, »; 9.34 14.36

known situations, we study the dependence of the thresholds
of temperature AT,) for the instability of the basic state

while the order of terms in the expansion of the perturbatiorgumed local heating, measured ByFrom Fig. 4 and Table

fields increases. As the influence of increasing the order Wit is possible to conclude that the critical temperature for

thg z-?rl]re_ctlon e><_panS|gnsl_\4)d_|s vtt_ary small, we only \clzvon- the stationary bifurcation decreases whenncreases so in
sider the increasing order idirection expansionsN). We w0 jinit 3— o the instability threshold is minimum and it

consider that convergence is reached if differences of CONziincides with the usual BM problerf20]. In Fig. 5 we

secutive aproximations sat_|sfy two conditions: thgse differ- how the maximum eigenvalues of the stability analysis with
ences decrease for increasing order of the expansions and the ; 5 4 (W/m)/°C  for B=200 and B=2500 at

difference between thAT, calculated with consecutive ap- AT.~6.12 °C which shows that in the former situation a
proximations is less than 0.05 °C. We think this is enough thigﬁerATc (AT.~7.57 °C) is needed to reach instability.

provide an accurate value farT. The value of 8 affects not only the value of the critical

h—lzz Zab\l,?,,nlg' /Ekg tvaluef of fthe tzr.eShOIdA.TC for temperature but also the value of the critical wave number.
=124 ( )/°C, wo values o B, an mcreasmg\_I are Figure 6 shows that the critical wave number increases for
guoted. These results satisfy the convergence conditions. It @ecreasingﬁ

clear also from the table that it is harder to obtain conver- The h number on the top surface has a considerable in-
gence wherB decreases, which means sharp mhomogeneltyﬁuence_ In Fig. 72 a curve AT, vs h for the stationary

For example, in Table IIl the same situation has been calCug: o0 o0 f0r a value 98=2500 is shown. There is a
lated for smaller values of and the results sug_ges_t that minimum threshold for mediurh while large and small ther-
convergence has not been reached. This behavior is due (0

the chosen set of functions that is not adequate o erceiveal surface conductance inhibit instability. As for the critical
q P Wave number, it increases with[see Fig. T)].

the details of a too localized boundary condition. In Tables . .
IV and V and the same kind of calculations have been de; From Table VI we can appreciate the difference between

veloped for increasing values of [124 (W/m?)/°C] and the critical numbers foB= 2500 (Fig. 7) and the ones ob-

1240 W/n?/°C), from which one can state that convergencetamed for 3=200. We can see that the differences of tem-

) o Perature thresholds and critical wave numbers are larger for
improves ifh increases and convergence has been reached

the expansions considered, no matter the valug.of smaller. In this table the error ik is =0.05.
P ' : The form of the growing perturbation for temperature and

velocity fields is also provided by our analysis. Just after the

instability the velocity and temperature in the cell are de-
The results of the linear stability analysis show that thescribed by adding these perturbations times some small pa-

thresholds have a clear dependence on the shape of the a8meter to the basic state. FBr=200 h=12.4(W/m?)/°C

andAT=7.50 °C Figs. 8 and 9 show the projections in the

TABLE II. Critical temperature difference$T, and wave num- y-z and x-z planes, respectively, for the basic state, the

bersk, for h=12.4 (W/m?)/°C anddifferent values of3 increas-  growing perturbation, and the resultant temperature field.

ing the numbeN of Chebyshev polynomials used in the expansion  In our stability analysis no oscillatory motions are ob-

of the perturbation fields. tained. On the other hand, the eigenvalue problem posed in

B. Stability results

h=12.4 (W/m?)/°C
M XN B=200 B=2500
ATC AT(N)—(N—Z) ATC AT(N)—(N—Z)

TABLE [IV. Critical temperature differencesAT, for
h=1240 (W/m?)/°C anddifferent values of3 increasing the num-
ber N of Chebyshev polynomials used in the expansion of the per-

7%9 6.72 6.00 turbation fields.

7xX11 6.81 0.11 6.20 0.20 h=124 (W/mz)/°C

7%X19 7.23 6.16

7X21 7.32 0.09 6.09 -0.07 M XN B=200 B=2500
7X25 7.50 6.12 7X25 1.58 1.53

7X27 7.57 0.07 6.12 0.00 7X27 1.58 1.53
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TABLE V. Critical temperature differencesAT, for TABLE VI. Critical temperature differenced T, and wave
h=1240 W/nt/°C and different values g8 increasing the number numbersk, for the two significant values g and different values
N of Chebyshev polynomials used in the expansion of the perturef h.

bation fields.

h (W/m?/°C) B=200 B=2500

h=1240 (Wi/nf)/°C
AT, ke AT, ke

M XN B=200 B=2500 12.4 7.50 2.20 6.09 2.05
7X25 2.96 2.89 49.6 2.31 2.20 2.18 2.15
7X27 2.96 2.89 86.8 1.75 2.25 1.69 2.25

124 1.58 2.30 1.53 2.30
Eq. (A3) does not have a self-adjoint operatdr so one 217 1.50 2.40 1.46 240
could expect the appearance of complex eigenvalids 310 1.57 2.50 1.53 2.50

403 1.68 2.55 1.64 2.55

However, for the considered parameters that does not hap-
pen. A similar situation occurs for the classical naed- 682 2.08 265 2.04 265
Marangoni problem. The stability problem is defined in 961 2.52 2.75 2.46 2.70
terms of a generalized eigenvalue problem in which there €240 2.96 2.85 2.89 2.75
not a self-adjoint operator. This is due to the presence of the

Marangoni condition at the surface. However, only real ei- - .
genvalues appear in it. Now there is a similar situation even OUr results indicate that the stationary patterns are not

reinforced due to the presence of a nontrivial basic state thagterfaceé motions which are excluded from the beginning
brings more factors that break self-adjointness in the operatofSSUmptior(4) of Sec. Il which is used in the derivation of

of the problem. In spite of it no complex eigenvalues appeaf€ Marangoni equation in the open surfpdaut bulk mo-
either. tions. The mechanisms of the instability are buoyancy and

thermocapillarity, but the patterns are not produced only on

the surface, but influence the whole layer of fluid. In our

opinion a quantitative explanation of the experiments in
It is not possible to make a direct quantitative comparisorRefs.[10,11] would require a detailed knowledge of the full

because in the experiments several parameters are unknovgonvective flow that appears befo(er simultaneously to

i.e., theh and B numbers. In Ref.6] for d=1 a transition to  the pattern of traveling waves. They seem to have a different

longitudinal rolls appears fakT.~17 °C and we obtain this physical origin, it could depend on interfacial motions which

transiton for B=200 and h=12.4 (W/m?/°C, have been excluded in this analysis.

AT.=7.57 °C. As the thresholds increase wigdecreases,

C. Comparison with the experimental results

it is conceivable to think that it corresponds to a smaller V. CONCLUSIONS
value of 8 that cannot be reached with our current numerical . ] ]
method. We performed a numerical analysis of convection due to

As can be appreciated in Figs. 4 an7 the results @n inhomogeneous heating, which has Gaussian shape in one
depend strongly on thé@ number and on thed number direction, in a container with a surface open to the atmo-
which are unknown in these experiments, and theoretical resPhere. As the convective layer is open to the atmosphere,

sults could fit with experimental ones for appropriate valueg?0th buoyancy and thermocapillarity mechanisms contribute
of these parameters. to the instability, although as depth is small, buoyancy ef-

fects are small also and the mechanism is mainly thermocap-

CC) AT
13)-

L L L L L L
0 2000 4000 6000 8000 10000

FIG. 4. Critical temperature thresholds . as a function of the
B number forh=12.4 (Wi/nf)/°C. Circles correspond to values FIG. 5. The maximum eigenvaluasof the stability analysis for
obtained with the method in which convergence was tested anti=12.4 (W/m?)/ °C, AT=6.12 °C and two different values of
asterisks correspond to values obtained without tested convergengg.(200 and 2500).
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ke

2.8

2.6

24F

2.2r

L 1 L ) L L
0 2000 4000 6000 8000 10000

FIG. 6. Critical wave numbek, as a function of thg8 number FIG. 8. Projection in the/-z plane of the temperature field ob-
for h=12.4 (W/nf)/°C. Circles correspond to values obtained tained for 8=200, h=12.4 (W/nf)/°C, and AT=7.50 °C. (a)
with the method in which convergence was tested and asteriskEhe basic statgp) the unstable eigenfunction times a small param-
correspond to values obtained without tested convergence. eter (€=0.5); (c) the temperature field after the instability. It is

obtained by sumperimposing the pld& and (b).
|IIary._ Thef ba5|c_ st?te Iras r?eﬁn calculated rr:ur;:encally. LEause the more the heating is localized the more the thresh-
consists of a pair of rolls which go up over the heater anc, .t e stationary instability grows and in the limit with-
down near the sidewalls. It has been characterized for dlffer(—)ut localization =) the thresholds coincide
ent shapes of the heating at the bottom plag&emeasured by i

. The agreement of our calculations and the experiments in
g)n?gﬁ for different values of the thermal surface ConOIUC'Ref. [6] can be only qualitative since the results depend on

An instability forming stationary rolls perpendicular to the h number and on th@ number, which are unknown in

the basic ones is observed when the temperature differenceth.s experiment, and theoretical results could fit with experi-
L pera . Mental ones for appropriate values of these parameters. If
the origin is increased. In order to obtain this flow a linear

stability analysis around the basic state has been performeE:EIS is compared to the experimental results in RE, 11,

This implies a full 3D analysis of very heterogeneous fields ey do not observe either the stationary patterns or the con-

which complicates the numerical analysis. The influence o ective basic state, but only the oscillatory motions, but we
P . ysIs. . hink that the situation described in the present paper does
the parameters affecting the problem is very different, thu

) ot correspond to their situation owing to the coupling be-

thg shape of the_assumed_Gaussmn at the b_o_ttom [ayer of tlﬂﬁeen the temperature distributions of the heater and the
fluid () has an important influence on the C”t'c.al d'ﬁ(.a.rencefluid and also to the fact that there can be interface motions.
of temperature thresholds and largefavors the instability; Our results reinforce the hypothesis that stationary bifurcat-

tr;e rolleﬂg)laé/ed b3(’j thér nl;r?hber "?‘tt. thlet top sur{ace dl_sffvery ing motions can be explained by bulk mechanisms and not
strong: the dependence of the critical temperature di erencBy surface motions.

on h is not monotonous and small and latg@umbers make
instability more difficult than moderate ones. It also influ-

(a) 10
ences the critical wave number which increases monoto- 2z’ ’
nously withh. All the thresholds changing tHe number are 0
increased for decreasing valuesgf

= 1 02
X

Comparing these results with the events in BM convec-
tion with uniform heating, the BM instability is inhibited by

(b) 10
the presence of a basic convective state. This is evident be- z' .
0 |
(C)AT, ke ® - 02
6 -1 X 1
7 ©

(b}
2.8

C

2.6
2.4

2 2.2

2

0 500 1000 1500 0 500 1000 1500 X
(W/m?/°C) h (W/m?/°C) h
FIG. 9. Projection in the-z plane of the temperature field ob-
FIG. 7. (a) Critical temperature thresholdsT, as a function of  tained for3=200,h=12.4 (W/nf)/°C, andAT=7.50 °C.(a) The
the h number for@=2500 and(b) critical wave numberk. as a  basic state(b) the unstable eigenfunction times a small parameter
function of theh number for the same value @. The circles (e=0.5);(c) the temperature field after the instability. It is obtained

correspond to the points calculated numerically. by sumperimposing the plots) and (b).
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at these points according to the following rules: E2b) is

evaluated at the points X{(,z) for
j=4,...N-3, i=3,... M—2, and Eq(26) at the points

A. The numerical method for basic state for j=2,...N=1,i=2,... M—1. The boundary condi-
tions at z=1, Eq. (27) and (28), are evaluated at

with a finite difference scheme to obtain an initial solution! =M. J=4,... N=3, and Eq. (30 at
for a Chebyshev-collocation method that is the same as that M+ 1=2, ... N—1. The boundary conditions at=—1
used for the stability analysis calculations. To use thisdf® €valuated as follows: Eqs(28 and (29 at
method we have linearized the equations expanding theri-1, 1=4.... N-3 andEq@3D ati=1, j=2,... N—1.
around their solution at the previous time. This allows us to! "€ boundary conditions ak=1, Egs. (32—(39 at

APPENDIX

We have solved numerically Eq&) and(6) in a first step

find the corrections to the successive approximations by=N, i=1,... M and at x=-1 Egs. (3239 at
solving linear systems. The criterion of convergence considt=1, =1, ... .M. ) _ _

ered is that the difference between two consecutive steps at 1here is a total of XNXM algebraic equations with the
each point is smaller than 16" same amount of unknowns af, and by,

n=0,...N—-1; m=0,... M—1). If the coefficients of

the unknowns which form the matricés and B satisfy det

) ) A—\B)=0, a nontrivial solution of this linear homoge-
The numerical method used to solve Eg5)—(35) is @  neous system exists. This condition generates a dispersion

Chebyshev-collocgtion rrlethod. Following this approach, thge|ation A=\ (k,R,M,B,u,,0,), equivalent to calculating

perturbation field¥® and ¢ are expanded in a truncated se- directly the eigenvalues from the system

ries of orthonormal Chebyshev polynomidis(x) T (2):

B. The numerical method for stability analysis

AX=\BX, (A3)
N-1M-1
F(x,2)= 2 2 a, Tn(X)T(2) (A1) whereX is the vector which contains the coefficients of the
B = = I polynomialsa,,, and b,
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